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MINIMIZATION OF THE TOTAL HEAT INPUT FOR MANNED VEHICLES
ENTERING THE EARTH'S ATMOSPHERE AT HYPERBOLIC SPEEDS

By Alvin Seiff and Michael E. Tauber
Ames Research Center

SUMMARY

The use of conical entry bodies to control the radiative and minimize the
total heat input to manned vehicles is investigated with an imposed accelera-
tion limit on two types of hyperbolic shallow-angle entry into the Earth's
atmosphere. The local Reynolds number is limited to retain laminar boundary
layer. The equations permit any desired values of the acceleration and local
Reynolds number limits and of the body radius, body density, and heat-shield
material properties. Numerical examples are given for a range of Reynolds
number limits, three body radii, and two heat-shield materials.

The dependences of the convective and radiative heating rates on air
density, velocity, cone angle, and base radius are written and integrated over
the trajectory in an expression which is particularly simple for nearly hori-
zontal flight. The major reduction in convective heating due to transpiration
from the heat shield is included, although somewhat uncertainly for the higher
speeds. The heat inputs are expressed as fractions of the vehicle kinetic
energy at entry to obtain a dimensionless figure of merit for comparing cases
of different vehicle mass or entry velocity. Trajectories analyzed include
constant altitude deceleration and constant Reynolds number descent. The
latter is the trajectory of minimum convective heat input for a given Reynolds
number limit, and of minimum total heat input in cases where the radiative
contribution is small., Aerodynamic 1ift required to follow these trajectories
is discussed.

For any specified set of entry conditions, the cone angle has an optimum
value which diminishes with increasing entry velocity. The optimum cones gen-
erally have small total radiative heat input compared to convective. For cone
angles larger than optimum, the radiative and total heat inputs can become
many times greater than the optimum. The total heat input energy fraction is
a sensitive function of body size on acceleration-limited entries. It is
smallest for large bodies of the order of 3- to L-meters base radius - for
example, less than 1 percent of kinetic energy at entry for velocities up to
about 2k km/sec. The corresponding mass loss may be less than 20 percent of
total mass at entry. With small bodies or very low Reynolds number limits,
the optimum energy fraction is increased several fold. While the heating may
be manageable, the requirements for lLift-drag ratio and acceleration limiting
appear to become difficult to satisfy aerodynamically with optimum cones on a
single pass at entry velocities above about 25 km/sec.



INTRODUCT ION

As space flight missions go to progressively greater distances from the
earth, the speed of entry into the atmosphere on return to earth tends to
increase. Thus, intercontinental ballistic vehicles and near-earth satellites
enter the atmosphere at 6 to 8 km/s; returning lunar vehicles, at 11 km/s;
and vehicles returning from the near planets, at speeds as high as 20 km/s.
Still higher entry speeds are likely to arise in connection with future
missions not yet considered in detail.

At the lower speeds, the entry heating has been readily controlled by the
use of configurations which direct most of the vehicle kinetic energy into
heating the atmosphere (ref. 1), and by the use of ablation shields which
block and absorb the energy converted to heat in the boundary layer. However;
the total energy to be dissipated (per unit of vehicle mass) increases with
the square of entry velocity, and, as will be shown, the fraction of the
vehicle kinetic energy deposited as heat in the body also tends to increase
with entry velocity. Successful solution of the heating problem at high entry
velocities depends on maintaining this heating energy fraction small.

The principal mechanism for body heating at velocities less than 10 km/s
is boundary-layer convection. At higher velocities, the gas in the shock layer
may attain temperatures well in excess of 10,000° K and radiate substantial
amounts of energy at optical and ultraviolet wavelengths (ref. 2). This radi-
ation falling on the body tends to become the predominant heating mechanism
for blunt bodies and increases the fraction of the vehicle energy converted to
body heat input.

While the intensity of radiative heating at any wavelength cannot exceed
that of a black body at the temperature of the shock layer and, for some low
altitude flight conditions, may approach that limit, such heating rates would
generally be considered unacceptably large. For example, at the modest shock-
layer temperature of 6500° K, the black body intensity is 10° kW/m2. Heating
rates are also limited by the energy available in the incident flow. For the
portion of the trajectory where the deceleration is large, the available flow
energy is also large ((l/2)pV3A:=max V/CD), and substantial fractions of it
can be radiated toward the body. Thus, these two limiting effects do not
prevent the radiative heating from assuming very large values.

It has been shown in references 3 through 6 that radiative intensity is
reduced for bodies, such as cones, which have oblique bow shock waves. As is
well known, the oblique shock wave is equivalent to a normal shock wave at the
lower flight velocity U = V sin 6. Furthermore, the radiative emission
behind a normal shock wave varies as a high power of the velocity (refs. 2 and
5) so that sweepback of the shock wave offers a powerful means of reducing
radiative input. Bodies having oblique shock waves, however, exhibit smaller
drag coefficients than blunt bodies, and this results in increased convective
heat input, as will be shown. Therefore, an optimum cone angle will be found
which minimizes the sum of convective and radiative inputs. The analysis of
reference 5 defines these optima for ballistic entry. It was found that the
fraction of entry kinetic energy that enters the body as heat may be kept
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below 0.01 at optimum for entry velocities to 30 km/s, if the trajectory is
limited to a peak Reynolds number below the transition Reynolds number. It
follows that such high-speed entries might be made with a relatively small
heat-shield mass loss,

The vehicle accelerations on ballistic entry at such velocities are large,
hundreds to thousands of times the earth's gravitational acceleration, and are
far in excess of human tolerance. The dquestion of optimum bodies for manned
entry at hyperbolic speeds therefore remains to be treated and is the present
subject. The restriction to suitably low levels of acceleration is obtained
by choice of trajectories of shallow angle, sometimes called grazing trajec-
tories. Two kinds of grazing trajectories are treated - constant altitude
decelerations and constant Reynolds number descents. The limitation imposed
on entry by the 1lift required at supercircular speeds is considered. Optimum
cone angles are defined, and the fractions of entry kinetic energy that go
into heating the body are calculated. ©Simplifying assumptions are made, so as
to obtain generality, and a range of entry parameters is considered. The
heating analysis follows that of reference 5. The problem of agblating the tip
during entry is analyzed to determine if an effectively sharp conical body can
be maintained.

Preliminary results of the analysis have been given in references 7, 8,
and 9.

NOTATTON
a entry vehlcle acceleration, m/s2
a shock-wave area, m?
A body frontal area, m®
B ballistic parameter, Cppod/Pm sin 7R
Cp gas specific heat at constant pressure,J/kg °K
Ce laminar convective constant (eq. (17)), (s/m)jm9'5
Cp drag coefficient, dimensionless
Ce equilibrium radiative constant (eq. (10)), (W'/ms)(s/m)q
Cqg heat-transfer coefficient, dimensionless
Cp nonequilibrium radiative constant (ea. (13)), (W/m®)(s/m)°
D drag force, N



OP%' ~ R

i

Tu

Re

Reg

power radiated from gas in shock layer, W

convective heating correlation constant (eq. (Al)), (m/s)°:36
acceleration due to gravity, m/s2

local static enthalpy, J/kg

streamline total enthalpy, J/kg

heat input integrated over body and over time, J
defined in equation (13)

laminar convective heating integral (eq. (29)), (m/s)‘j+2
velocity exponent (eq. (16))

constant (eq. (35))

pV, a constant on constant Reynolds number trajectories, kg/mzs
a/t, (s/m)®

1ift force, N

entry vehicle mass, kg

Nusselt number (eq. (A2))

density exponent (eq. (10))

cone surface pressure, N/mf

velocity exponent (eq. (10))

local laminar convective heating rate (eq. (A2)), W/m®
free-stream dynamic pressure, appendix C, N/m2

body base radius, m

body nose radius, m

gas constant, J/kg °k

Reynolds number based on base radius and free-stream air properties

Reynolds number based on slant length and properties at boundary-
layer edge
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maximum allowable value of Reg

radius of planet, m

velocity exponent (eq. (13))

slant length of cone

time, s

temperature, °k

air velocity in the shock layer, relative to the body, m/s
component of flight velocity normal to shock wave, m/s

velocity of change in the equilibrium radiative constants, 13,700 m/s
volume , m3

flight velocity, m/s

near-earth satellite velocity, 7900 m/s

entry vehicle weight, N

range measured along flight path, m

rate of axial regression of the tip due to ablation, m/s
altitude, m

moles per original mole

transpiration effectiveness parameter

trim angle of attack

reciprocal of atmospheric scale height (eq. (ClB)L m~L
flight-path angle below horizontal

shock-wave standoff distance (eq. (E4)), m

energy to ablate unit mass of heat shield, J/kg

H

—>— », dimensionless

cone half-angle




e) conical bow wave half-angle

W
e gas viscosity, kg/m-s
o air density, kg/m3
P 0/ Po
Py body density, kg/m°>
o value of V¥ for V = o (eq. (18))
¥ CH,/CE, |
(") derivative with respect to time
Subscripts
c laminar convective
cl collision limiting
Co laminar convective in absence of ablation
e equilibrium radiative
B at entry into the atmosphere
1 limiting or maximum permissible value
min minimum
n nonequilibrium radiative
o) earth sea-level condition
opt optimum
st stagnation point
W evaluated at vehicle surface
X horizontal component, or component along the flight path
v vertical component, or component normal to flight path
€ evaluated at boundary-layer edge
= shock-layer properties

Stream properties without subscript are evaluated in the free stream.
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ANALYSIS

Heating Equations

The rate of heat energy input to a vehicle flying in the atmosphere may
be expressed as a fraction Cg of the kinetic energy pV3A/2 of the air
intercepting the body per unit time

af _ pV3A
gt = CH (1)

To satisfy the conservation of energy, the heat-transfer coefficient Cg
defined by equation (l) cannot exceed 1.0. The work converted to heat by the
total drag force per unit time

3
DV = Cp 937-2—‘-‘* (2)

results partly in heating the atmosphere and partly in heating the entry
vehicle. That is, dH/dt < DV, so that Cg/Cp is less than 1 and represents
the fraction of the work done by the drag force which goes into heating the
vehicle.

The total heat input on a trajectory is obtained by integrating

equation (1) .
V=0 3
H =f Cg __png at (3)

@]

Equation (3) is evaluated in reference 5 for rectilinear ballistic entry into
an exponential atmosphere. For other trajectories, it can be integrated if
the dependence of Cg, p, and V on t 1is established. ©Since Cg can be
expressed as a complicated function of p, V, and ry, for a given body shape,
relations between p, V, and t which permit the expression of the integral in
terms of one variable are sought. These relations are provided by the
trajectory equations.

The rate of velocity change along the flight path may be written

av _ OV3A .
m & = oy VA |
y /_ g T b Ty T mesmy (%)
“ D
v Y
w

For trajectories within the atmosphere, with the

drag force comparable to or larger than the weight,

and at small values of 7, this becomes, very
Sketch (a) closely,



o & pVZA
mE = D3
from which
2 4dv
dt = - &= d¥
CpA p v2 (5)
Thus, for flight at or near zero path angle 7, equation (3) becomes
H =f A owvoav (6)
0 Cp

which depends on p only through the dependence of Oy on p. For reference,
it is informative to consider the case CH/CD = constant. Then, with constant
vehicle mass, equation (6) may be integrated to obtain H = (CH/Cp)(mvgz/2).
Here, CH/CD is seen to be the fraction of kinetic energy at entry which is
converted to body heat. With Cg variable, the total heat input H may still
be expressed as a fraction 1 of the kinetic energy of the vehicle at entry

_ n(mvg®)
== (7)

where 1 1s a weighted mean value of CH/CD, defined by combining equations (b)
and (7) to obtain, for a constant vehicle mass,

10y v v
TI—QJ; &7 T (8)

il

It is seen that 1 may be made small by minimizing the area under the curve
(CH/CD)V as a function of V. DNote that equations (7) and (8) show that the
total heat input is inversely proportional to drag coefficient.

The mass lost by ablatlion may be written, for cases where the heat stored
is small compared to that resulting in ablation,

fn _ s~ (9)

where € is the energy absorbed per unit mass of material ablated.

The Heat-Transfer Coefficient

The heat-transfer coefficient CH is a function of the flight velocity,
stream density, body shape and size, atmospheric composition, and nature of
the boundary layer. Even when the boundary layer is laminar, the heat trans-
ferred by convection at the speeds considered is very large; while with a
turbulent boundary layer, the convective heat input integrated over the tra-
jectory is from 5 to 10 times larger (ref. 5). The present analysis seeks to
define conditions of minimum total heat input, and these will clearly corre-
spond to those which maintain a laminar boundary layer. It is assumed that
laminar flow can be maintained by restricting the local Reynolds number below
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some specified limit. The appropriate critical value or values for this limit
are presently unknown for conditions of high total enthalpy flow over an
ablating surface. Therefore, the value to be chosen is treated as a parameter
of the analysis, and the analysis is restricted to a consideration of the
laminar flow boundary layers.

The heat-transfer coefficient is necessarily treated in three parts, the
laminar convective contribution, CH,, the equilibrium radiative contribution,
CHe , and the nonequilibrium radiative contribution, CHp. The latter two
are assumed to be given by equations from reference 5, reproduced below.

The radiative power emitted per unit of shock-layer volume at eguilibrium
is

@- = Q=] 0
o CeU9pP (10)

where U =V sin 6y is the component of velocity normal to the shock wave and

P = p/po. Values of the constant and exponents are, for air,

o _ 6.1k W <§>15.45T

€1 104° S \nn

q, = 15.45 } U < 13,700 m/s (11a)
p = 1.80

7
and

a _ 6.)—1-)—1- i E 5.05

€2 106 m3 \m

a, = 5.05 U > 13,700 m/s (11p)
p = 1.80

with pg = 1.225 kg/ms. The equilibrium radiative component of Cg may be
written

(q-s)ﬁ(p-l)fg tan2 8y - tan? 6o
Po 3 tan® 6.

CHe = CeV (sin &;)% (12)*

Values of the wave angle 6Oy for cones in high velocity flow are given in

figures 35 and 36 of reference 5, based on the analysis in appendix B of that
reference.

For considering the dimensional consistency of equation (12), note that
in the mks system the W/m3 is identical to the mechanical unit kg/(m)s3.
Similarly, in equations (13), (14), and (15) the W/m2 is identical to the kg/s>

9



The nonequilibrium radiative power unit of shock-wave surface is assumed,
following arguments given in reference 2, for example, to be a function of the
velocity U only, above a certain ambient density, Pe1

aE 5 Y
s - 1
3n 57 (13)
where
4.1
Cn = 1011 m2 L1 (1k)
and we have used Eéz = 1073 gg in reference 5.

In the "collision limited" regime i = 1, while for p > p.;, 1 = 0, and
the noneguilibrium component of the heat-transfer coefficient which follows

from this is
vS-3 /ftan 64\, . s-1/ 5\
Cu, = Cn < Y ) (sin oy) -gp— (15)
c

The convective heat-transfer coefficient may be written, based on a recent
analysis of equilibrium real air boundary-layer heat transfer to pointed cones
(ref. 10),

CoVY

CHa. = Jsin 26 (16)
Co \/‘Iﬁ C
with Le
Ce = 104 <> (17)
j=1/6

It will be noted that this coefficient and exponent differ from those given in
reference 5. Appendix A derives equations (16) and (17) from the correlation
given in reference 10, and compares the values of CHco with those of
reference 5.2

The convective heat transfer in the presence of ablation is reduced by the
transpiration cooling effect of the ablation vapors. Following reference 5 we
assume

Ch -
p=at = L0 g (18)
CHeo 1 +KeV2

2Values of Cg, and J derived in appendix A for = 3000° K, and Dy
between 0.1 and 1. O atmosphere are 1.16X107% and O. 14 respectlvely. For
velocities between 10 and 20 km/s, values of CHeo, &1ven by these constants
and those of equation (17) differ by less than 5 percent. The choice of
Jd = 1/6 is advantageous because it permits integration of the convective heat-
ing over the trajectory in closed form, as will be shown.
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where Keg = G/C, o 1is a laminar transpiration effectiveness parameter that
depends on the molecular weight of the ablation products (ref. 11), { is the
energy per unit mass (mechanical energy units) required to heat , dissociate,
and vaporize the ablation material, and ¢ 1is an assumed asymptotic value of
CHo/CHe, for infinite velocity.

With o = 0, equation (18) gives V¥ = 0 at infinite velocity. This cor-
responds to infinite effective heat of ablation (a concept not used herein) at
infinite total enthalpy. Provision of the term o as an asymptotic limit of
¥ for V > o is based on experimental results from Ames Research Center arc
Jet facilities (ref. 12) which suggest that the factor V¥ does not go to zero
but to a small fractional value of the order of O.l. Since the behavior of
ablation shields at the high velocities considered here i1s not well estab-
lished, the effect of varying the asymptote o from O to 0.1 will be shown.

It may also be remarked that for charring organic ablators, the true heat
of ablation ¢ 1is not a constant, being a function of the degree of dissocia-
tion of the gaseous products and, therefore, of the temperature of the ablat-
ing surface. Hence, it depends on the heat-transfer rate and distribution
between the convective and radiative contributions. Since the study of such
materials is quite specific to the material chosen and too complicated for
parametric treatment, it was not attempted here. The materials chosen for the
examples were a low temperature organic ablator, Teflon, and a material with
a large heat of wvaporization, quartz, which is assumed to vaporize and not run
off the surface as a liquid. (In practice, quartz does suffer liquid runoff,
particularly at moderate heating rates.) The choice of these materials is
intended to be illustrative, and does not imply a judgment by the authors
that they represent leading contending materials for high speed entry. A
third material, graphite, was included because it appeared to offer advantages
for protection of the conical tip. The assumed properties of these materials
are given 1n the following table.

¢, Ke,
¢ (n/s)® (s/m)2

Tef lon 0.26 2.2x10° 12.0x1078
Quartz 0.24 16.0x108  1.5%x10°8
Graphite 0.42 67.0x10® 0.63x1078

For comparison, the heat of ablation € of the charring ablator, phenolic
nylon, at a high surface temperature, 3500° K, has been estimated to be as
high as 28x10% (m/s)® (ref. 13). Thus, its mass losses, exclusive of chemical
and mechanical erosion, should be somewhat smaller than those of vaporizing
quartz as presented herein. For graphite, oo is again chosen to follow the
molecular weight dependence suggested in reference 11, and the heat of abla-
tion is taken from data in reference 14.
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Integration of the Heat-Transfer Equation

In terms of the components of heat input, Cg = CH. + CHe + CHp, equa-
tion (8) becomes

1 ¢ 1C 1 C
n=2f _Hgldl+2f Eld_Y_J,gf SBn Vg ¥ (19)
o Cp Vg Vg o Cp Vg Vg o Cp Vg Vg

NT="Nc +Me + Mn (20)

or

From (19), (20), and (12), with Cp = 2 sin2 6., corresponding to the Newtonian
drag coefficient of a cone at zero angle of attack,®

1 - _ 2 g - 2
e =f CeVq ssp 1 ry tan® &y - tan® O¢ (sin 9w)q Va v (21)
o Po 3 tan® 6, sin? 6, Vg Vg

Assuming that the cone angle and base radius are constant during entry and
that the bow wave angle is independent of speed, we write, noting that

V/VE = U/UE,

U
2 e
2 - tan2 q,-3
e = ry, tan= Oy - tan= 6Oc Ce,VE 1 “(sin ew)qlf pp-l(l) d<—U—
po? 3 tan® 0o sin® Oc A UE UR
q.-2
q,-3 1 _ 2
+ Ce,VE - (sin ew)qgk/P o l<§%> d<£é> (22)
Ui,z
UE

If a constant altitude is maintained during entry, p is constant and
equation (22) may be integrated to obtain

-1 C ql-l C Uqg—l q_2-
- o (tan2 6y - tan2 6c)sin Oy | Ce,U, L ety [(UE > i l-‘
© TP poPvg? 3 tan® 6c sin® 6c q, - 1 a, - 1L \Uz,2 ]
" (23)
where q. -1
Ce U 3 K
1 1,2 2_55Xlolo — = g
4 -1 m (m-s)®
and _
q,-1
2212 - g,0px100 L
qg -1 TI'J.4

3The question of how such a cone can develop the lift force generally
necessary for hyperbolic grazing entry will be discussed in a later section.
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Alternatively, if the Reynolds number is maintained constant along the
trajectory, pV is approximately constant and

q‘l_:p
gpv)p_l r.  (tan® 64 - tan2 6q)(sin Gw)pjbeiul’E Ce Ulig 2P
Ne = ._b.p o A — - -1
9z -

Vg? Po 3 tan® 6c sin? oc l 4, =P
(2k)
where q.-p
)

Cerd “ELE - 132107 —<>

9 -
and

o Q=P 1.80

Zfzla:2 - 551307 X <§>

a, - P m3

In equations (23) and (24), when Ug < Ui,2, Ui,z is to be replaced by Ug.

The nonequilibrium contribution to 1 1is written by use of equa-
tions (19), (20), and (15)

e = CuVg s-3(tan 6y > (sin 6y Jfl(V/V )82 <p > (25)
. tan 6 sin® Gc ol

which, for constant altitude entry, becomes

) CnVES_S <fan 0,2 (sin GW <. > (26)
T o(e-1) \Fan &/ sin® 6, \Pg

and for constant Reynolds number entry

o = CaVe® Ez :C) (Si:nzwéi_l {p Zoo(s— [ < > } (OV)S< >}

(27a)

For the cases of interest here, it is generally permissible to simplify equa-
tion (27a) to

_cpugST@ <%an oy (sin 6,)S"*

Eor (27b)

tan 6, sin® 6,
where pV 1is a constant of the motion.

The laminar convective portion of 7 is written by use of equations (16),
(18), (19), and (20)

13



Ne

CC '\] sin 2790 B f E < l - g + G> VJ +1 dv (28)
o 1

B VEZ NTH sin® Bc +-KCV2 NiS

This integral cannot be evaluated in closed form for arbitrary noninteger

values of j. However, it can be readily evaluated numerically. For constant
altitude entries, the constant «/% is taken outside the integral; the integral
is then a function of VE and the ablation material constants Ke and ¢ only.

\2
Io(VE,Kc,0) =f g (—l——ig + c) v+ gv (29)
o 1+ KoV

For given material properties, it need be evaluated one time only, as a func-
tion of VE. Values of this integral normalized on VEJ+2 are plotted in
figure 1 for the material properties previously tabulated for Teflon and vapor-
izing quartz and for o =0 and o = 0.1.

o4
It can be noted that the choice of
value for ¢ is not a critical one for
031 vaporizing quartz within the velocity
range considered, but is very important
;%;02_ for Teflon at the higher velocities.
E o=0.l
Quartz
\\\\\\\\\5‘-___—__—_=0 On constant Reynolds number tra-
olr \\\\\\\“-________jzalh“m jectories, the integral can be obtained
=0 in closed form for the special case
L ' L L ! j = 1/6 by th thod i
o 8 12 i 20  24x10® J l/. % e method shown in
Vg, km/s appendlx .
1 i J
| 2 3
Ve Heating Below Satellite Speed
VS
Figure l.- The laminar convective heating Below satellite speed, only con-
integral for various assumed ablator vective heating is important. Since
properties. this speed range contributes only a

modest fraction of the total heating during the entry, no effort was made to
optimize this part of the flight path. (Extensive work dealing with the prob-
lem of entry at satellite speed has been reported in the literature.)

For constant Reynolds number trajectories it was assumed that the
constant Reynolds number flight path was maintained to terminal velocity. In
actuality, as will be shown, such a trajectory can be followed only to the
point where V., = V. However, this occurs at very low speed - a few hundred
feet per second for the larger bodies, a few thousand feet per second for the
smaller ones - and the heat input below this speed is an insignificant part
of the total, so no appreciable error results from the assumption.

For the constant altitude trajectories the constant altitude flight paths
were followed to somewhat below satellite speed where they were matched in
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velocity and altitude to zero-1ift ballistic decay trajectories originating at
satellite speed a@bove the atmosphere. A small discontinuity in 7 that occurs
at the matching point was ignored. The time history of the coordinstes of this
kind of flight path are tabulated in reference 15. The convective heat-
transfer relation, equation (28), was applied to the appropriate portion of
these trajectories. The maximum acceleration is 8.3 g, making the satellite
speed descent trajectory sultable for manned vehicles.

Trajectory Analysis

The choice of trajectories was important to the analysis. The constant
gltitude deceleration and constant Reynolds number descent trajectories were
selected to simplify the heating analysis as well as to permit studies of
parametric variations in vehicle size, density, cone angle, etc., on similar
flight paths. At the same time they are representative of the heating on
shallow angle entry. Trajectory types considered in some earlier work, such
as constant lift-drag ratio trajectories, are, by comparison, complicated by
altitude excursions (skipping motions), lack generic similarity, and can be
analyzed only numerically. One of the types chosen here, the constant Reynolds
number descent, is thought to present the minimum heat input to bodies of
optimum cone angle. As such, it is a useful standard of comparison.

The objectives of the trajectory analysis were to determine the feasibil-
ity of the trajectories for real applications, to supply needed constants for
the heating analysis (free-stream density, primarily), and to obtain closed-
form expressions for the usual trajectory variables of range, acceleration,
velocity, etc., as functions of time. The feasibility of the trajectory is
largely determined by the lift-drag ratio required to follow it without exceed-
ing the constraints on acceleration and Reynolds number. The constraints
amount to a specification of minimum permissible altitude, in the case of the
constant altitude deceleration, and of the altitude at the point of entry onto
the constant Reynolds number descent, in the other case.

It was assumed that the lift-drag ratio would be generated by a geometric
modification of the cone, such as those described in appendix C. Roll oscilla-
tion at the trim attitude provides modulation of the vertical component of
L/D, which is required, in general, to be a decreasing function of time.

The principal trajectory equations are given below and developed in
appendix D.

Constant altitude deceleration.- The lift-drag ratio required is at every
instant a function of the total acceleratlon and the f£light velocity

ol

—

O a—ﬂ“

where the total acceleration, the vector sum of that along the path and across
the path, is given by

(30)
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and. W/CDA may be written in terms of the cone angle, mean body density, and
base radius.

W PpThé (32)

CpA 6 sin2 9 tan 6¢

When the total acceleration is limited to a specifiled value, aj, the
corresponding L/D is given by equation (30), and the ambient density at the
flight altitude may be obtained from equations (31) and (32) as

PpTps [ (a;/8)% 1]1/2

3Vg2 sin2 6. tan 6e L(VE/Vg)4

p = (33)

If a Reynolds number limit rather than the acceleration limit determines the
altitude, the density is given by

tan 06, i
P = Rel —3— (34)
where
Ree
k = ﬁ_; tan QC (35)

is approximately constant and equal to 2 for U < Vg (appendix D). For
U > Vg, k takes on smaller values, going to about 1.3.

The velocity-distance, velocity-time, and time-distance relations are

1 CpA
=ee o " (36)
VE
V =
Tk (37)
1 +5 g oVgt
and
1 Pt ox c
e2 m =l+%—'Tvat (38)

respectively, where x 1is arc distance along the orbital path. Fixing the
maximum acceleration and the entry velocity can be shown to determine (CDA/m)Q
Hence, for given maximum acceleration and entry velocity, the x -t and V - %
relations are universal.
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Constant Reynolds number descent.- Appendix D shows that to maintain a
congstant Reynolds number requires a constant rate of descent, Vy = constant,
given by

- & (oV)

T 5 (39)

Vy

where pV 1is a constant and [ 1is the reciprocal of the atmospheric scale
height. The angle of descent is not constant, however, being defined by

V.
sin 7 = ﬁ; (L40)

where V decreases with increasing time.4 The angle of descent increases
until, in some cases, Vy =V and 7 = 90°. At this point, the motion is
governed by the eduations of simple ballistic descent and it is no longer
possible to maintain the Reynolds number constant.

The lift-drag ratio is governed by equation (D34), which may be simpli-

fied, for the cases of most practical interest, by use of small angle approx-
imations for the sine and cosine of the flight-path angle to obtain

L_1-(vg/M)2 . ‘%_r (41)

D Ry (Vy,/V)

where R is the radius of the earth or other planet whose atmosphere is
entered. The total acceleration may be written

B e LY C YL S
= = = R\ —= + 1 2
g Vs./ \L2(V/vg)(W/CDA) | Pr v a
which may also be put in terms of the rate of descent to obtain
a _ Vy'4 2 v Vy\ o v\~ 2
s = K@ (BRp)™ + g7 v, ) [ERp) +2BRp] + (g (h2b)

Finally, the relations between velocity and time, veloeity and distance, and
time and distance are, respectively,

4The heating occurs predominantly at velocities greater than VE/4 and,
in this range, sin 7 is smaller than 4 sin yg (eq. (L40)). The magnitude of
YE is defined by equations (39) and (40), and it is found that Vy/Vvg is,
for cases of interest, a very small number, corresponding to angles smaller
than a degree. Hence, the use of small flight-path angle approximations for
L/D is justified, and the neglect of the weight force component in equation (1)
is also valid.
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VE = e (%3)
VvV =Vg - -C—’Iil—%(ﬂev—)x (k)
Cph (ov)
2Vg - —= t
x = G;B agz L -e B 2 ) (45)

where, again, oV in equations (43) to (45) is a constant.
PRESENTATION OF RESULTS

Trajectories

Constant altitude.- Ambient densities and flight altitudes dictated by
the acceleration and Reynolds number limits are shown in figure 2 as a function

a5 1.ex1073 of entry velocity for representative
-\ \mg 910G , values of t@e governing pgrameters. The
. L2k \6750 ZEZ?I;?=B§mem2 steeper fgmlly.of curves 1is the‘
= = e T accelergtion-limited set. The inter-
gso—é 0.8k Reg fan 6, _ sections of this family with the
< - ~J5 Reynolds number limited family define
5 o4l 189x108m™! o ints of transition from Reynolds num-
60 L 95x10°m™ ey 0 gcceleration governed altitudes.
7o 0 L I i —=389x0°n"" Congider the two dashed curves, for
1.0 1.4 1.8 2.2 2.6 3.0 P
Ve example. At entry velocities below
v, 1.66Vg, the Reynolds number requires the
Figure 2.- Ambient demsities and altitudes LOvCT density and governs, while above
dictated by acceleration and Reynolds this velocity, the acceleration limit
number limits. governs. For a 300 cone with a base

radius of 3.05 m, the Reynolds number limits corresponding to the three curves
are 107, 5X106, and 108, respectively. For the same radius and cone angle, the
acceleration curves represent body densities of 640, 320, and 160 kg/m3, top to
bottom. For these conditions, then, a Reynolds number limit of 106 would
govern altitude selection for the entire range of entry velocities considered.

Entry may take place at higher altitudes than those calculated, but not
at lower altitudes without violating the imposed limits on acceleration and
Reynolds number. The altitudes shown, therefore, represent undershoot limits.
The overshoot limits, not shown, depend on the available L/D. The undershoot
boundary, however, is the altitude of interest for this analysis, since it
minimizes the total heat input for optimum bodies.®

SGuidance limitations make it necessary that real vehicles be able to
withstand entry over a finite corridor. They must therefore be designed to
accept somewhat larger heat inputs than the minimum considered here.
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The lift-drag ratios needed for maintaining constant altitude flight are
shown in figure 3 as a function of velocity for several levels of total accel-
eration. In general, the maximm L/D is required at the highest velocity,

2.0

%=2 4 6 8 10 12
15 -
L
5 loF
05
0 ! I ! | _
10 15 2.0 2.5 3.0 3.5
v
VS

Figure 3.- Lift-drag ratios required on constant altitude trajectories.

that is, at entry in our analysis. A lift-drag ratio of 1 is sufficient to
permit a 10 g limit constant altitude entry at a velocity of 2.76 Vg At
higher entry velocities, the L/D required rises rapidly, or, alternatively,
the acceleration limit must be increased. For any acceleration level, the
L/D curve is asymptotic to a vertical line at a velocity VE/VS = Ja/ . This
is the velocity for which the centripetal acceleration is the total accelera-
tion. The entry body is then flying above the atmosphere, but still requires
1ift to hold it in a circular path; hence, L/D must be infinite.

When the altitude is governed by a Reynolds nunber limit, or is higher
than the minimum altitude permitted, the acceleration is smaller than the
acceleration limit. Figure 3 is then entered at the appropriate level of
acceleration to define L/D. A conseguence of such a situation is that high
lift-drag ratios may be required at the lower entry velocities.
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The variations of velocity, range, lift-drag ratio, and acceleration with
time after entry are shown in figure 4 for an entry velocity of 2.5 Vg and an

5xm3r 26 10
X
4 2.2+ —0.8 -8
v
VS
3+ sl L —o.6 -6
D
[a]
\" —
x, km Ve [¢]
L
2 14+ -0454
v
VS
a
g
I+ Lol —Ho0.2 2
L
D
ol | | 1 1 o 0 do
0 | 2 3 4 5 6

t, min

Figure 4.- Representative characteristics of an acceleration-limited constant altitude
trajectory, az/g = 10, Vg/Vg = 2.5.

acceleration limit of 10 g, attained at entry. The curves are terminated at
satellite velocity. The range covered to this point is 4600 km, and the

100

.2 2

3 sin“ 8, tan“g,

80 vy = k_g Re, S5
Po'o

o} 10 20 30 40 50x 103
Pbrbz’ kg/m

Figure 5.- Descent rates for constant
Reynolds number as a function of body
density and size.
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elapsed time is roughly 6 minutes. The
lift-drag ratio and total acceleration
decrease continuously with time, the
former going to zero at satellite
velocity.

The curves in figures 2 and 4 are
examples. Other cases of interest may
be readily obtained from the trajectory
equations.

Constant Reynolds number.- The
descent rates characteristic of con-
stant Reynolds number trajectories are
plotted in figure 5 as a function of
the body density times the base radius
squared, for two cone angles and two
values of the Reynolds number. The
equation given in the figure is an




alternate form of equation (39) which incorporates equations (32) and (35).
Large or dense bodies tend to have quite low rates of descent to maintain con-
stant Reynolds number. The assumptions cited earlier concerning small angles
of descent are amply satisfied by the conditions in this figure.

The lift-drag ratios required are plotted in figure 6 as a function of
flight velocity for various rates of descent. At Vy less than about 25 m/s,
the required lift-drag ratio starts to become large, and may exceed that which
is available. The accelerations, on the other hand, are minimized by use of
small descent rates (fig. 7) and 25 m/s is, fortuitously, again near the bound-
ary for acceptable levels of acceleration at the higher entry velocities.

2.5 Thus, to satisfy the requirements on
both L/D and acceleration, values of
V, must lie in the vicinity of 25 m/s.
A band in figure 5 indicates this
acceptable region. Values of body den-
sity and base radius to which it corre-
sponds depend on the cone angle and
Reynolds number chosen and may be calcu-
lated from the equation in this figure.

oir

An example of a constant Reynolds
nunber descent that satisfied reasonable
requirements on acceleration and L/D
is shown in figure 8. The body size
and density give a value of the param-
eter pprp2 of 2980 kg/m. For a cone
angle of 30° and a Reynolds number of
5 million, the descent rate, according
to figure 5, is 27 m/s. The trajectory
variables in figure 8 show a descent to
satellite velocity in 4 minutes from an
entry velocity of 2.5 Vg with a maxi-
mum acceleration of 9.8 g, a maximum
40 L/D of 0.7, and a flight range of
3150 km. The angle of descent is 0.08°
initially, increasing to 0.2° at satel-
lite velocity. Following a trajectory
with such precision may, in practice,
present a problem in flight-path con-
trol. In principle, however, such
trajectories appear feasible.

Figure 6.- Lift-drag ratios required on
constant Reynolds number descents.

4
= Heating
[¢]
o 1 1 1 1 Constant altitude entries.- The
1.0 1.5 Zf 2.5 3.0 total heat input energy fraction to
% cones of large base radius with 30° and
Figure 7.- Acceleration on constant 35" half-angles is shown in figures 9as
Reynolds number descents. a function of entry velocity. TFor the

conditions cited, the total heat input
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Figure 8.- History of a constant Reynolds number descent.
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Figure 9.- Variation of the heat input energy fractions with entry velocity on constant
altitude entry.
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ranges from O.4 to 2.5 percent of kinetic energy at entry, increasing with
increasing Vg, and depending also on the cone angle and base radius.

Laminar convective heating predominates in the case of the 30° cone with
a base radius of 3.05 m (fig. 9(a)). The equilibrium radiative heating is
kept small by the obliquity of the shock wave. The nonequilibrium radiative
contribution is essentially negligible.

For the 35° cone with a base radius of 4.57 m (fig. 9(b)), however,
equilibrium radiative heating becomes important at the higher entry velocities
and,at Vg = 3 Vg, contributes more heat input than the convection. Note that
two sets of curves are shown for the 35° cone. One (the solid lines) corre-
sponds to entries at the 10 g acceleration limited boundary, and the other
(dashed lines) to entries at higher altitudes. When the radiative heating is
large, minimum total heating occurs at an altitude higher than that for the
given acceleration and Reynolds number limits. This minimum is shown by the
dashed curve labeled 1n, ;.. The ambient air densities at the flight altitudes

are given in auxiliary scales along the abscissa.

The total heating energy fractions for cone angles from 20° to 60° are
given in figure 10, with the base radius, body density, and heat-shield prop-
erties fixed. The minimum envelope of these curves gives the minimum value of
heat input energy fraction that can be attained at each entry velocity for the
conditions specified. The large angled cones depart from this minimum with
increasing entry velocity and, as a result of their large radiative heat
inputs, attain values of 17 much larger than the minimum. The optimum cones
have half-angles slightly less than 259 at Vi = 3 Vg and near 30° over a
substantial part of the entry velocity range considered.

Presenting the energy fraction as a function of cone angle, as in
figure 11, is useful for defining more precisely the optimum cone angle and
the minimum energy fraction. In the case shown, which 1s typical of large
limit Reynolds numbers, the minimum heat input within the given limits occurs
at the intersection of Reynolds number-limited and acceleration-limited curves.
Thus, the optimum cases attain the limiting values of both the acceleration
and the Reynolds number at entry. On the dashed portions of the curves, one
or the other of the limits is exceeded. Therefore, the minimum point in the
Re, = 107 curve, for example, cannot be utilized.

The definition of the optimum at higher and lower values of the limit
Reynolds number is illustrated in figure 1l2. Curves are shown of 1 as a
function of 6, for four sets of altitudes corresponding to limit Reynolds
numbers from 10° to 108, At small cone angles, where radiative heating is
negligible, n varies on these curves inversely with (tan 6,)3/2 according to
equations (28) and (34). At larger cone angles, 7 increases as the radiative
heat input becomes important. Hence, each curve for a given Reynolds number
limit exhibits a minimum. A fifth curve shows 1 as a function of 6, with
altitude determined by the acceleration limit. In this case, 7 1is indepen-
dent of 6. at small cone angles, where radiation is negligible (egs. (28)
and (33)), rising as cone angle is increased to the region of important
radiative heating.
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Figure 10.- Variation of heat input energy fraction with entry velocity for cones of various
angles on constant altitude trajectory.
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angle on constant altitude trajectory, on optimum energy fraction and cone angle
VE/Vg = 2.2. for Vg = 3 Vg.
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Figure 13.~ Definition of minimum heat input
and optimum cone angle for bodies of three
base radii at Re; = 107.

The values of minimum 17 within
the simultaneous limitations on accel-
eration and Reynolds number are shown
by the circled points for the four
values of Re;. At Re; = 10% and 107,
the optimum occurs in the region of
small radiative heating, and is similar
to that discussed in figure 1ll. At
Re; = 10% and 10°, the optimum has &
significant radiative contribution, and
occurs on the Reynolds number limited
curve at an altitude above that for the
acceleration limit. For example, at
Reqy lOS, the optimum occurs at a
flight altitude greater than that for
a; = 10 g. This is shown by the values
of 7ne, the dashed curves. (Note that
Ne ~ LAG, eq. (28).) The peak accel-
eration at the optimum point for this
Reynolds number limit is, in fact, only
about 1.5 g. Hence, it is seen that
the optimum point need not occur at
accelerations as large as the accelera-
tion limit. However, the Reynolds num-
ber attains its limiting value in every
case. Furthermore, lowering the limit
Reynolds number below 107 can signifi-
cantly increase the heat input and
optimum cone angle, and also, by the
arguments of an earlier section, the
lift-drag ratio required at entry.
increase in 1, however, is not as
large as that which would occur with
transition to turbulence in the absence
of a Reynolds number limit.

The

Curves like those in figure 11 are
given in figures 13 for bodies of three
base radii at entry velocities from 1.k
to 3.0 Vg, for a limit Reynolds number
of 107. These curves define the varia-
tion of the minimum energy fraction,
which increases with entry velocity, and
the optimum cone angle, which decreases
with increasing entry velocity. Compar-
ison of figures 13(a), (b), and (c)
shows the base radius to be an important
variable, and in figure 1k, optimum
energy fraction is given as a function
of base radius for fixed Reynolds number
and acceleration limits and body density.
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40x10-3~ For small bodies, the optimum cone

;:§QRWm3 / angle is small, the radiative heating
_2 Rey=107 / is negligible, and the optimum energy
3ol Altitude for 7 / fraction varies inversely with base

Vaporizing quartz ablator / radius, For large bodies, the optimum
cone angle is increased, the radiative
heating becomes large, and the optimum
energy fraction increases with body
size (dashed curves)., An optimum base
radius is defined, If, in place of the
above constraints, the altitude is per-
mitted to go above that dictated by the
Reynolds number and acceleration limits
to the altitude for minimum total heat
input, the solid curves are obtained,
Figure 1k4.- Dependence of optimum energy On these, the heat input is essentially

fraction on base r?.dius for constant independent of basgse radius at large
altitude deceleration. ..
base radii,

Topt 20

Pp = 320kg/m3
Rez =107 The high values of mn for the
Vaporizing quartz ablator  hodies of small base radius are a
Ve/V; =3.02.82624 22 54 result of the acceleration limit
imposed, Without this limit, the
curves on the left of figure 13(c) may
1.8 be continued to their minimum points to
obtain the low values of energy frac-
.6 tion shown in figure 15 with a 1 m base
radius, These values would be avail-
able to unmanned probes, Note that the
| | | | ., Reynolds number limit of 107 is still

0 10 20 30 40 50 60 applj_ed.
8., deg

Figure 15.- Energy fractions of a l-meter base The body density also enters as a
radius body without an acceleration limit. consideration. On acceleration-limited
entries, 1, ~ 1A/p,. Thus, the

acceleration-limited curves of figure 13{(c) would be lowered a factor of 3 in
the small cone angle range by a ninefold increase in body density. There is,
therefore, an advantage in the use of dense vehicles in the small size range.
With larger bodies (e.g., fig. 11), lowering the acceleration-limited curve
allows the Reynolds number-limited curve to govern. The Reynolds number-
limited cases are independent of body density. Hence, a small and limited
reduction in 7 1is available from body density increases at the larger base

radii.

The effect of the limit Reynolds number on optimum energy fraction is
shown in figures 16 for large base radius entry bodies at several entry veloc-
ities. The second ablation material of the analysis, Teflon, is introduced
here for comparison. The characteristic effects of the Reynolds number limit,
developed in connection with figure 12, are shown here explicitly. When the
Reynolds number limit is high Nopt is relatively independent of Rej;, but
when the limit is small and the body base radius is large, nept 1s sensitive
to Rey and increases as Rej; decreases. The energy fractions remain below
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Figure 16.- Variation of optimum energy fraction with limit Reynolds number on constant
altitude entries.

0,017, however, for all cases shown, at Reynolds number limits as small as 10®
and entry velocities to 3 Vg, Optimum cone angles for the conditions of fig-
ures 16 are shown in figures 17. The optimum cone angle decreases with increas-
ing entry velocity and with increasing Reynolds nunber limit, and is relatively
insensitive to ablation material,

The low values of energy fraction calculated for Teflon (fig. 16) make
that material appear attractive, These values are due, however, to the high
blowing rates, that is, high mass loss rates, associated with the low heat of
ablation of Teflon, Mass loss curves (figs. 18), in fact, show the order of
merit of the two materials and heavily favor the material with large heat of
ablation, They also show the effect of changing the limit Reynolds number on
the mass loss, The effect of the limit Reynolds number can perhaps be

60~
60
a, =10g
Py = 320 kg/m3 sol %:Eﬁk .
50k — — Tefion __/?r:f-‘ono g/m
Vaporizing quartz g
VE/ Vg = I.4\ Vaporizing quartz
.8\ 40~
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8 e%pr 30
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20}-
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1o} 10}
| ] ] | ] 1 1 ! ) J
o] 4 8 12 16 20x108 0 4 8 12 16 20xI108
Re, Re,
(a) rp, = 3.05 m (b) ry, = 457 m

Figure 17.- Optimum cone angle variation with limit Reynolds number and entry velocity
for constant altitude entry.
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Figure 18.- Mess loss ratio on constant altitude entry for two ablation materials.

classified as moderate from 5x10° to 20x10®, Below about 5x10° it becomes
sizable, Mass losses as small as 20 percent of the entry mass are calculated
for entry to three times satellite velocity with vaporizing quartz at ReZ = 5x10°.
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It is noted that if the asymptotic blockage factor o were taken to be O
instead of 0,1, the mass losses with Teflon at the higher entry velocities
would be approximately halved, while those of quartz would be less affected
(fig, 1), Hence, the determination of the correct value of this constant is
important,

The other effect of low values of the limit Reynolds number referred to
earlier is to increase the lift-drag ratio required, If the lift-drag ratio
required exceeds that available, the entry becomes unattainable, The under-
shoot altitude may then be said to have gone above the overshoot, so that the
available entry corridor is negative, Conditions for which this may occur are

shown in figures 19, where L/D required at entry is plotted as a function of
a, =10g
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Figure 19.- Limitation on entry velocity imposed by joint consideration of Rey and
L/D available.

Reynolds number limit for bodies of two (large) base radii, As long as the
acceleration limit is attained at entry, the L/D is, according to equa-

tion (30), independent of Reynolds number, This condition is represented by
the horizontal sections of the curves, When the acceleration goes below the
limiting value, the L/D needed rises rapidly, as on the curve sections at the
left, The optimum cone angle also varies with Re,, as in figure 12, and along
with it, the available L/D (appendix C), If the L/D required crosses the
boundary marked maximum L/D available, it enters the unattainable region,
This is seen to be important at the highest entry velocities considered, con-
sistent with figure 3, which shows that L/D becomes marginal at such entry
velocities,

Experimental observations of transition in very high enthalpy flow over
ablating cones will be needed to determine a suitable value of the parameter
Re

lo

Constant Reynolds number entries,- While the trajectory analysis showed
that constant Reynolds number descents could be made with a 10 g acceleration
limit, by designing to a descent rate of 25 m/s, the heating calculations were
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not limited to such cases, Interest in the constant Reynolds number trajectory
as a minimum heat input trajectory suggested its more general investigation,

Curves similar in form to those presented for constant altitude entry were
obtained, Thus, figure 20 shows the effect of entry velocity on the heat input

20x10-3 Re,= 107 energy fraction for a given local
[ 8= 30° Re.=107 Reynolds number (107), cone angle, base
fbx 305m radius, and ablation material, (Note
15~ Vaporizing quartz ablator Tmin . . .
A( that the energy fraction is independent
” ok /| o of body density for the constant
P Reynolds number trajectories,) As with
AL 7 the constant altitude entries, where the
i < ~, radiative contribution is large,
" Reynolds numbers smaller than the speci-
03 & de éz 2¥ ;o ¥4 ;e fied value can lower the total heat
Ve input,
VS
Figure 20.- Typical variation of the heat An interesting feature of figure 20

input energy fractions with entry velocity

on constant Reynolds number trajectory. is that the laminar convective energy

fraction, n,, diminishes with increasing

entry velocity, This will occur when o¢ 1is small and KCV2 is large compared
to 1, In the limit of o = O, the integral in equation (28) then becomes, for

oV = constant,
Jti/z

V- +372
(pv)-/2 f Byl Cav VE
o KV (3 + 1/2)Ke oV

and

3/2-]
e ~ 1/Vg

Figure 21 shows the minimum heat input energy fractions as a function of
entry velocity for a series of cone angles at a given Reynolds number, and
the envelope of minimum 1 for these conditions is defined, Figure 22 shows
the effect of body base radius and ablation shield properties on the envelope
values, The ablation property effect is comparable to that on constant alti-
tude entry, but the base radius effect is small, The convective heating con-
tribution is, in fact, independent of Ty, @8 may be seen from equation (28)
where (erb)l/2 may be taken outside the integral as a constant (see also
eq. (B5)). Furthermore, the radiative contribution is only weakly dependent
on ry, varying as 1,92 according to equation (24) with p = 1,8, Hence,
unlike the constant altitude entry, the constant Reynolds number entry shows
heating energy fractions essentially independent of body size,

The effect of the Reynolds number on the optimum energy fractions is
shown in figure 23, The variation in the convective heat input with Re~1/2
is the principal part of this dependence, but changes with Reynclds number in
the optimum cone angle and radiative input also contribute, The optimum cone
angles are shown for four Reynolds numbers and two ablation materials in fig-
ures 2t . There is some sensitivity to Reynolds number, while the effects of
ablation material and body size are minor, In figure 25, mass loss fractions
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Figure 21.- Variation of the heat input energy fraction with entry velocity for cones of
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Figure 24.- Optimum cone angles on constant Reynolds number trajectories.

are presented as a function of entry

Re. (miion) - L e edem s, velocity for optimum cones of the two
020( ’ ablation materials,

Comparison of results for constant
altitude, constant Reynolds number, and
ballistic entry,- The minimum energy
fractions calculated for constant alti-
tude entry, constant Reynolds number
entry, and ballistic entry are compared
in figure 26 for a common Reynolds num-
ber limit, 107, and a vaporizing quartz
ablator, For consistency with the other
Ve results, the energy fractions on ballis-
Vs tic entry have been recomputed using the

Figure 25.- Mass loss fractions on constant present heat-transfer relations, The
Reynolds number trajectories. constant Reynolds number descent has the
lowest heat input, as was expected, For
it and the ballistic entry, the energy fractions are insensitive to body size,
a consequence of the fact that neither is acceleration limited, For the con-
stant altitude trajectories, the large sensitivity of energy fraction to body
size noted earlier appears as a result of the imposed acceleration limit, The
energy fractions of the acceleration-limited 1-m base radius bodies are,
in fact, off the scale selected and not shown, The constant altitude entry of
this size body without an acceleration limit, interestingly enough, falls
within the band for ballistic entry, Hence, constant altitude entry without
acceleration limit compares almost identically with ballistic entry in respect

to total heat input,

0.04 -

el

The optimum values in the best cases do not differ greatly for the three
types of trajectories, It is noteworthy that grazing entries with accelera-
tions within human tolerance can be made in large entry vehicles with heat
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Figure 26.- Comparison of optimum heat input energy fractions for three types of trajectories.

mo:____“_ :”:87 input energy fractions and mass loss
T~ p:=&ngm3 ratios comparable to the lowest possi-
Qan fh - 4.57m ble values obtained on either steep
8 =29° ballistic entry or the optimum, con-
) 0.06 - stant Reynolds number descents,
bo.o4— Ablation of the vehicle nose, - The
degree to which initially conical entry
ooz bodies become blunted by ablation dur-
ing entry has been calculated for a
. | | . . number of constant altitude and ballis-
) 04 08 12 16 20 24 28 tic entries by the method of appendix E,

< : Noses of three materials, Teflon, vapor-
Figure 27.- Nose radius as a function of izing quertz, and gr.'aphlte, Vere. consid-
velocity for a quartz nose on constant ered, One example is shown in figure 27,
altitude entry at Vg = 2.6 Vg. where nose radius %to base radius ratio
is plotted as a function of velocity
for the quartz ablator on constant altitude entry of a 29° cone of an entry
velocity of 2,6 Vs, The rate of growth of nose radius with velocity, —drnﬁiV,
is nearly constant from entry down to V/Vs = 1,8, after which it diminishes,
The calculation is stopped at satellite velocity, at which point the rate of
growth is small, Extrapolation to zero velocity gives a radius ratio less
than 0,1, corresponding to a mass loss at the tip of the order of 1 percent
of the total mass at entry, Furthermore, over 99 percent of the body surface,
the bow shock wave is oblique during the period of intense radiative heating
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Figure 28.- Nose radius at satellite velocity

0.40
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O rp =4.57m

8 =5c°p,

Vap quartz

Graphite

A

as a function of entry velocity for ini-
tially sharp cones of three materials on
constant altitude entry.

figure 29, has a history much like that in figure 27,

so that the radiative heat input is
small in the presence of the small nose
radius obtained,

Values of the radius ratio at
satellite velocity are shown as func-
tions of entry velocity in figure 28
for constant altitude entries with the
three tip materials and two body sizes,
The final nose radii tend to become
very large for Teflon ablators, and
moderately large with vaporizing quartz
at the higher entry velocities, but
remain less than 0,1 ry, for graphite,

For ballistic entry comparable
results not calculated previously are
shown in figures 29 and 30 for bodies
with a base radius of 1 m. The ablation
of a Teflon nose for Vg/Vg = 2.0,
Figure 30, which

extends to higher entry velocities than figure 28, shows that on ballistic
entry as well as on grazing entry, nose ablation can be severe or moderate,
depending on the nose material,

While these estimates should not be regarded as definitive (in view of
the assumptions, appendix E), they suggest that optimum conical entry bodies

can
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Figure 29.- Nose radius as a function of
velocity for a Teflon nose on ballistic
entry at an entry velocity of 2 Vg.

34

substantially retain the advantages of pointed cones with respect to
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Figure 30.- Nose radius at satellite speed as
a function of entry velocity for initially
sharp cones on ballistic entry.



radiative heat input,® and can have acceptable mass losses at the tip,
provided high performance ablation materials, such as the assumed vaporizing
quartz and graphite, can be successfully applied,

REVIEW OF ASSUMPTIONS

The present analysis was performed to demonstrate the existence of
optimum conditions, to define the megnitude of the optimum heat input, and
cone angles, etc,, and to identify the effects of the principal variables in
parametric fashion, By its nature, such an analysis of a complex problem must
be approximate, but the simplifying assumptions made to permit analysis
must not invalidate the results to be obtained, To emphasize this, it is use-
ful to review and comment on the assumptions made, which are as follows:

1. The angle between the flight path and the horizontal is small.
Comment: Satisfied exactly for constant altitude entry, and very well satis-
fied on high-speed portions of constant Reynolds number entries.

2. Changes in mass, cone angle, and base radius of the vehicle are small
during entry and may be neglected. Comment: The cone angle and base radius
changes are indeed small for cases considered. The mass loss integrated over
the trajectory is restricted to 0.2 of the mass at entry or less in cases
presented.

3. The drag coefficient is constant during entry. Comment: Should be
valid in hypersonic speed range for bodies of the class studied.

4, TLaminar boundary layer can be maintained by restricting the local
Reynolds number below a sultable limit. Comment: Assumption is consistent
with knowledge of boundary-layer transition processes for nonablating surfaces
at lower speeds. Its validity at the speeds and ablation conditions of this
analysis requires experimental study. Considerations of roughness of the
ablating surface, uniformity of vapor emission with time and over the surface,
etc., may enter.

5. The ratio of the Reynolds number evaluated at boundary-layer edge
properties to that evaluated at free-stream properties is a constant for any
one angle., Comment: Approximately true, and, as shown in appendix D, the
constant chosen will yield a local Reynolds number equal to or less than the
selected limit.

6. The density profile of the earth's atmosphere has an exponential
dependence on altitude. Comment: Not a critical assumption for this analysis.

8A favorable effect of tip blunting is to reduce the convective heating
rate, The reduction is sizable when the shear layer of the body nose becomes
larger than the boundary-layer thickness, This effect has (conservatively)
been neglected in the present analysis.
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7. The heat-transfer coefficients may be represented by equations given
in the text. Comment: Much of the speed range considered is beyond the range
of present day laboratory tests. The equations employed are based on pres-
ently available theoretical and experimental information, and use best esti-
mates of high-temperature gas properties. For conical flow, less extrapolation
of radiative and convective transport properties is required than for stagna-
tion point flow, since the enthalpy is well below stagnation enthalpy. For
example, the radiative heating on optimum cones at VE/VS = 3 is within the
range of present day experiments on blunt bodies, and should not be in doubt
by more than a factor of 2. With larger cone angles and blunt bodies, larger
uncertainty exists in the radiative transfer. For example, the vacuum ultra-
violet contribution, recently discovered to be important, has not been included
in the formulas presented, and would increase the heat input for U > 1.4 Vg.
Convective heating is presently believed to be subject to less uncertainty
than the radiative heating in this high-speed range.

8. Flow along streamlines outside the boundary layer may be regarded as
isoenergetic, that is, flow energy losses by radiaticn may be neglected. Com-
ment: The heat-transfer coefficient is defined in terms of the available flow
energy. ©Small values of the radiative heat-transfer coefficient therefore
signify essentially constant energy flow and, from the results presented, it
is clear that the optimum bodies satisfy the assumption. Nonoptimum bodies,
however, may have large values of Cpg,, and deviate from isoenergetic flow.
Several cases were analyzed allowing for energy loss along streamlines and one
is shown in figure 31. The energy input is affected by only a few percent for
this 60° half-angle cone. TFor smaller angle cones, the effect is even less.

9. Radiative reabsorption in the shock layer may be neglected; that is,
the shock layer is assumed to be optically thin. Comment: If radiative Inten-
sity at all wavelengths is small compared to that of a black body of the shock-
layer temperature, the assumption is Justified. This appears to be the case
for the optimum and near-optimum cones analyzed. For large angled cones with
shock-layer temperatures high enough to produce significant ionization,

10 U > 1.4 Vg, the vacuum ultraviolet
_——§\\\\\~—”‘\\\ region of the spectrum becomes impor-
tant (refs. 16, 17) and reabsorption of

o8 Ve© 2.6V radiation may be an important consider-
Py i t t i tabl
= 3.05m ation. Other atmospheric gases, notably

sk 8 = 60° those generating CN as a radiating

) species, can also encounter important

e reabsorption at particular wavelengths.

With air, no such predominant radiators
are present.

04

o2} 10. The heat blocking and ablative
behavior of the heat shield may be sim-
plified, as represented by equations (9)

o oF; oA 06 08 o and (18). Comment: This assumption has
V. four parts. The form assumed for the
Figure 3l.- The effect of a nonadiabatic shock heat blocking factor V has been dis-

layer on the heating of an effectively cussed in the Analysis and Presentation
sharp cone of 6 = 60° on constant
altitude entry.
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of Results. Although the magnitude of the heat input is affected by the value
assigned to the asymptote o, the variation of heat input with cone angle is
unaffected, and the existence and nature of the optimum do not depend on the
value chosen. Second, chemical reactions at the surface and in the boundary
layer have been neglected. For the quartz material, this is appropriate, but
for graphite and Teflon, some chemical reaction must be expected. However, at
the very high speeds considered, reaction products tend to be dissociated at
boundary-layer temperatures, and chemical reactions may not be of overriding
importance. Third, heat reradiated by the ablation shield is neglected. Com-
parison of the rate at which heat can be reradiated with the heat input rate shows
that the reradiation is small compared to the heat input rate for surface tem-
peratures below about 3500° K. This is near the maximum permissible surface
temperature for any material, so the assumption may be allowed. Fourth, the
production of ablation vapor is assumed to be a result of convective heating
only. For cones of near-optimum angle, this is a good approximation. For
cones of larger angle experiencing large radiative heat input, the transpira-
tion rates would be higher than calculated, with a moderate reduction in con-
vective heat input. It is clear that the treatment of the ablation shield is
approximate, and that some basic understanding of the high velocity behavior is
still lacking, but it should be adequate to indicate the mass loss and the heat
blocked to a Tirst approximation.

11. The heating of partial cones, modified to generate 1ift, may be
approximated by analysis of the complete cones from which they are derived.
Comment: Intuitively, one can see that this will be the case to a useful order
of approximation. In detail, a number of corrections or modifications to the
analysis would be required to treat the modified cone. TFor example, in the
case of oblique base plane modification described in appendix C, if the mean
base radius of the upper and lower meridians is regarded as the base radius of
the analysis, the convective heat input is reduced on the upper meridian and
increased on the lower meridian in approximately compensating amounts. The
same is true for radiative input. The Reynolds number limit must be applied
to the longest (lower) meridian, which decreases the stream density permitted,
and is perhaps the main effect. Certainly, the magnitude of the over-all
result will not be greatly affected.

12. The heating increment on tangential entry into the atmosphere from
the point of entry to the point of joining the selected constant altitude or
constant Reynolds number trajectory is equivalent to that obtained by entering
the design trajectory at full entry velocity. Comment: For vehicles of the
size, density, etc., considered herein, velocity losses of the order of a few
percent of Vg will, in actual entries, occur before design altitude is
reached. ©Since the Reynolds numbers are, in this phase, lower than the design
value, convective heat input will be increased (eq. (28)), while radiative
input will be diminished (eq. (22)). The altitude range of the principal
velocity loss is within one atmospheric scale height of the design altitude,
so that the convective heat input may be shown to be increased by a factor
smaller than el/2., TIf, in fact, a factor of 2 is allowed on the values of
Cy for this interval, the increment in n is typically 0.0002. The
approximation is therefore satisfactory.
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CONCLUDING REMARKS

The results presented indicate that heat input energy fractions on hyper-
bolic grazing entries, with acceleration limited to within human tolerance, can
be limited to about the same levels as on ballistic entries which have no
acceleration limit. Under the best conditions, corresponding to moderately
high boundary-layer transition Reynolds numbers, entry may occur at velocities
up to 3 Vg with less than 1 percent of the initial kinetic energy finding its
way into the body as heat. Corresponding mass losses of the heat shield may
be less than 20 percent of the total mass at entry with shield materials of
high heat of ablation. Conical bodies away from the optimum, of which blunt
bodies may be considered one extreme, will experience heat inputs many times
greater than the optimum.

The optimum bodies are generally swept back to such an extent that the
radiative heat input is small compared to the convective. An exception to this
arises if the local Reynolds number must be limited below one million to main-
tain laminar boundary layer, in which case the radiative input may comprise the
order of one-third the total heat input at optimum. The total heat input is
substantially greater in these cases than in the case of higher limit Reynolds

numbers.

The determination of the level of Reynolds number for maintaining a
laminar boundary layer is an important problem requiring experimental solution.
Not only are the heat input and heat-shield mass loss increased for low values
of the Reynclds number limit, but the acceleration may be reduced well below
its limiting value with the consequence that a high lift-drag ratio is
required. At values of entry velocity approaching 3 Vg, the L/D required
tends, in any case, toward higher values than can be aerodynamically generated
by modification of the optimum cones. Lowering the total acceleration to
obtain a low Reynolds number will, at such velocities, usually insure that
insufficient aerodynamic 1lift 1s available,

For entries into the earth's atmosphere at or below 10 g total accelera-
tion and with levels of L/D which can be generated with cones of optimum
half-angle, the maximum entry velocity will be limited to about 3 V . Higher
velocity entry might be accommodated by use of multiple pass entries or by use
of rocket thrust to supply lift or drag force.

The trajectories selected for analysis tend to give near the minimum
possible convective heat input by staying near the highest permissible Reynolds
number. Trajectories on which the Reynolds number is allowed to go far below
this 1imit will increase the heat input, as will those that go above it and
incur a turbulent boundary layer. The constant Reynolds number descent obtains
the minimum convective heat input exactly, for a given limit Reynolds number,
cone angle, entry velocity, and ablation shield. If on this trajectory the
cone angle is selected to make the total heat input a minimum, and if the
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radiative input is found to be small, then the entry may be identified as a
minimum heat input case with respect to both trajectory and cone angle.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 7, 1966
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APPENDIX A
THE LAMINAR CONVECTIVE HEAT-TRANSFER COEFFICIENT

The problem of laminar convective heat transfer to nonablating cones at
very high flight velocities has been investigated theoretically by G. Chapman
(ref. 10). Chapman finds that his many solutions for a variety of flight
velocities from 4.5 to 25 km/s, cone angles from 15° to 60°, and wall temper-
atures from 1000° K to 4200° K can be correlated by equations of the form

Nu _ ¥ (Al)

\/R_e; VO.36

where
a prx
Nu = = AP
he - hy Ky (42)
PylleX
Rey, = (A3)
My

and g 1s the local heating rate at a distance x from the cone vertex.t
The coefficient F is weakly dependent on wall temperature and surface pres-
sure (see fig. 3, ref. 10), and takes the following values when V is in

m/s. Tw’ OK

p,, atm | 500 | 1000 | 3000 | 4200

0.1 9.07
1.0 6.86 8.45 | 9.72 | 10.11
10.0 9.89

Equation (Al) may be put in the form of the heat-transfer coefficient used
herein if the heat-transfer rates over the surface are integrated and the
integral is equated to the present defining equation of total heating rate at

zero ablation:

C VoA _k Bt v Pdule , (k)
o 2 " 3P [rsines Frw

Lsome departures from the correlation occur when wall enthalpy approaches
recovery enthalpy and when the boundary layer becomes highly ionized.
Chapman (ref. 10) discusses the extent of these deviations and the conditions
under which they occur. It is sufficient here to note that they do not
importantly affect the optimum conditions of the present analysis.
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For adiabatic flow hy = h + V2/2, and furthermore \h - hw\ << V2/2, so
hy - h, may be replaced by VZ/2. Hence,

Py Ue

_ F LR

L
CHCO =3 086 —————
\ pry, sin 6 Pry

In addition, ue/V may be replaced by cos 6, to a good order of approxima-
tion, and

(A5)

Py Py T [Vz sin® 6, . l} T

AT A

where the wall pressure ratio is converted to the terms in the bracket by use
of Newtonian theory, and V2 sin® 9./RT >> 1 for the velocities and cone

angles considered. Equation (A5) becomes

O.14 \/——FLW sin 6. cos 6
_ b FEV ZyRTy ¢ ¢

CHCO 3 JPTp Pr., (86)
which is of the form of equation (16) with
[P
Co L F ZRTy (A7)

3 VZii; Pr,

From this, it may be seen that C. depends on surface temperature and pres-
sure, through F and through the air properties at the wall. In neither case
is the dependence a strong one, however. For example, . py/Ty increases by
only 27 percent as T, 1s lowered from3OOOO K to 1000° K, while Zy remains
very close to 1.,0. The conditions chosen for evaluating C. were TW==3OOde

and p,;, in the range from 0.1 to 1.0 atmosphere. With these selections,
\O- 14
Co = 1.16x107% <ﬁ> m°* > (A8)

Comparison of equations (16) and (17) with the laminar convective heating
equations of reference 5 shows that in the lower speed region of that refer-
ence, V < 13,000 m/s, the given values of CHCO agree to within about 10 per-

cent., The higher speed equation of reference 5 was based on extrapolation of
a lower speed theory, and underestimates the present results by factors ranging
from 1.1 at 13,000 m/s to about 4.0 at V = 30,000 m/s. This fact should be
noted in comparing numerical results of reference 5 with the present results.
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APPENDIX B

INTEGRATION OF CONVECTIVE HEATING RELATION FOR
CONSTANT REYNOLDS NUMBER TRAJECTORIES

For the constant Reynolds number trajectory the laminar convective heat-
transfer relation, equation (28), may be integrated in closed form for Jj = 1/6.

Cc Nsin 26¢ fVE<0+ 1 —o>v7’6 av

e =
viAfry, sin? 6, Yo 1+ KV

(B1)

where, for constant Reynolds number, pV = K 1is constant. The integral may
be expressed as a sum of two integrals

/ sin 26, Vg
(f oV>’3 av + f L -0 s/ dV>

v /Kr sin2 o 1+ K.V2
E b c (B2)

The first integral can be evaluated immediately, while the second requires the
change of variable Y = V2’2, yhich results in

Ny =

Co NP Sin 26 /3 1 - YE 3 4v |
N, - ; 0 c [%'OVEB N i&7§_ill __X_ngg (B3)
Vg }Krb sin® 6, o} 1+ KoY

The solution to this integral can be found in reference 18 and is

¢.. Jpy 5in 26,
c NPo c 3 8/3
nc = 2 g GVE

VEldKrb sin2 Oq

L 30 -0) (X 1, K2R e 2Kty 4 )
2 Ko = g 2/ N araye 1/
c Ko Ko2/%Y2 - Ko /%y + 1
Yg
1/3
B S J}__K__L> (BL)
NER 2 - K%

After evaluating this expression at the limits of integration and returning to
the original variable V, we find
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APPENDIX C
LIFT-DRAG RATIOS OF MODIFIED CONES

Three ways of generating lift with cones are known or have been proposed:
(l) controlling attitude of the unmodified cone; (2) removing all or part of
the upper conical surface above a given plane surface; and (3) using an oblique
base plane. The latter two alternatives are sketched in figure 32.

Half cone 7 The first alternative is the least

%:7€m¥,//’ 1\ attractive for hyperbolic entry, since
7 it creates crossflow conditions in the

201 g boundary layer that are very damaging

to laminar stability (see, €,

16 -Canted bose cone ® refs. 19 and 20). Furthermore, since
.~ '?T:? the effective angle presented by the
all 6¢

lower surface to the stream is 6, + ay,
and since L/D and ot must diminish

% with velocity, the effective cone angle
osk and drag coefficient diminish during
entry increasing the total heat input.
At any speed, Cp 1s less than its
04r allowable maximum which is dictated by

the angle presented on the lower sur-
. ; face only. Hence, this alternative does
© 20 o5 deq 80 % not recommend itself compared to the
o other two.

Figure 32.- Lift-drag ratios of modified
cones at zero angle of attack. The second alternative, proposed
in reference 21, provides the maximum
lift-drag ratio in the limiting case of the half cone. That ratio is shown
as a function of cone angle in figure 32. Any smaller value of L/D down to
zero may be selected by canting the plane of the upper surface at an angle
facing the stream. In the absence of skin friction and base drag, this modi-
fication gives infinite L/D at 0, = 0. Cases of present interest, for
example, 0, = 30°, have maximum L/D up to l.l. Crossflow affects this con-
figuration along the intersection of the plane surface with the conical sur-
face, where a pressure jump exists laterally (in the case of a rounded
intersection, distributed to give a lateral pressure gradient). Turbulent
boundary layer might be expected to appear first along this region and to
spread over the adjoining surfaces at appropriate Reynolds numbers. The con-
vective heating of the upper surface imposes a penalty not considered quanti-
tatively in the analysis. The estimation of the heating of the upper surface
poses some theoretical problems in the presence of a blunted tip and the
crossflow phenomenon described above.

The third alternative, proposed in reference 22, was investigated by
means of Newtonian theory in reference 23, and the results for lift-drag ratio
are also shown in figure 32. The lift-drag ratio of the cone with an oblique
base plane is the same as for a flat plate inclined at the base angle to the
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stream, that is, L/D = cot 8. As & - 0, L/D becomes very large. However,
for bodies enclosing a real physical volume, & must be greater than 6., so
that for 6, = 300, a base angle of 42° would comprise a very thin and doubt-
fully practical case, which would have the same L/D as the 300 half cone,
namely, l.1. Bodies of this cone angle with a useful volume arrangement might,
in fact, be restricted to lift-drag ratios of 0.8 or less. This modification
should, however, be free of crossflow effects, except those occurring behind
the vehicle base, and may present the best possibility for retaining laminar
flow over the conical heat shield. It is also the closest of the three alter-
natives to the assumptions of the heating analysis, which treats a pure cone
at zero angle of attack.

With alternatives (2) and (3), the method of reducing the component of
L/D in the vertical plane as velocity diminishes along the trajectory is to
roll the vehicle until IL/D times the cosine of the roll angle equals the
L/D required. To prevent lateral curvature of the flight path, a roll oscil-
lation symmetrical about the position for vertical 1ift vector is followed,
the amplitude determining the vertically effective component of L/D. The
angles of pitch and sideslip of the vehicle are (ideally) zero throughout
entry, simplifying the theoretical treatment of heating.
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APPENDIX D
DEVELOPMENT OF TRAJECTORY RELATIONS

In this appendix, the first section develops the equations for
acceleration-limited, Reynolds number-limited constant altitude flight; the
second develops the equations for constant Reynolds number descent; and the
third defines the relationship between local and free-stream Reynolds numbers
on cones in hypervelocity flight.

EQUATIONS OF CONSTANT ALTITUDE DECELERATTION

The 1ift force required to maintain circular flight above satellite
velocity is given by
L= [(V/vg)® - 11w (p1)

from which it follows that the lift-to-drag ratio is

26 2] %2 =2

For zero dynamic pressure q s L/D is required to be infinite, since the need
for the lift force remailns, whlle the drag has gone to zero (note asymptotic
behavior of the curves in figure 3). To fully display the effect of velocity
on L/D, equation (D2) is written

(V/vg)® - 1  W/CpA
(v/vg)2  (1/2)pVs®

L
5 = (D3)

where the factor on the right is a constant for a given vehicle and altitude,
and may be identified as the L/D required at infinite velocity with this
vehicle and altitude.

The altitude is selected to maintain specified limits on the total
acceleration and Reynoclds number. The axial acceleration may be written as

Bx _ (1/2) st <‘ )
T - T Wook  \Ts (D%)

while the component radial to the earth is the centripetal acceleration

-2
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so the total acceleration is

2
ax® + ayf (1/2)pVq
N/ <VS>/ W/CDA ] i (&)

By equation (D3), this may be written entirely in terms of V and L/D.

< <—> (D7)

which is solved for L/D to yield equation (30) of the text. The maximum
value of a/g occurs when V = Vg and, in acceleration limited cases, is set
equal to the limit value of acceleration, al/g. The L/D varies after entry
with velocity according to equation (D3), while the acceleration decays accord-
ing to equation (D6). The stream density at which the peak acceleration
attains the limit value may be obtained from equation (D6).

W/CDA/ az/g)z N
(Ve/Vs)*®

2
- PoTpE (21/8)” 1 (D8)

3Vs2 sin2 6. tan 6. ./ (VE/Vg)*

If, on the other hand, the altitude is determined by the Reynolds number
limit, then at entry onto the constant altitude trajectory, when Reynolds

number is maximum,
o u.S
Rez=<€€> (D9)
v
€ /E

where the subscript € didentifies fluid properties at the boundary-layer edge
and S 1is the slant length of the cone. As will be shown, to a good order of
approximation, in the following equation

peues/“e _ k (D10)
DVTb/H "~ tan 0,

k = k(U) only. The parameter k(U) has an approximately constant value of 2
for U < Vg and diminishes to 1.3 at U > 1.3 V . Through equation (DlO),
equation (D9) may be written in terms of free- stream variables as

k_ (PVrp
Re, = tan 6. < V) :>E (p11)

and the free-stream density determined by the Reynolds number limit is
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tan 6 5
p = Rey ———& —— (p12)
Thus, with the density for the acceleration. limit defined by equation (D8) and
for the Reynolds nunber limit by equation (D12), the value selected to observe
both limits is the smaller of the two.

EQUATIONS OF CONSTANT REYNOLDS NUMBER DESCENT

The condition that p€u€S/u€ remain constant along the trajectory
requires that erb/p be approximately constant also. If we assume that
variations in the stream viscosity with altitude may be neglected, and that
rp 1s not appreciably diminished by ablation in flight, then by equation (p10)

oV = Re, EE%—QQ E; = constant = K (p13)

and equation (5) which, for small path angle 7, governs deceleration along
the trajectory becomes

1 4v CpA x
T&®=" w2 (D1k)
so that
Cph x
==t
v m 2
el (D15)

Similarly, in terms of x as independent variable,

av CpA K
&~ w2 (D16)
and
Cnd
D™ K
V_VE_TEX (Dl?)

The rate of descent through the atmosphere implicit in equations (Dl3),
(D15), and (D17) may be obtained as follows. Assume, following reference 1,
that

-By
RS (p18)
Po
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By (D13) and (D18),

poe—ByV - X (D19)

Eliminating V between (D15) and (D19) gives

CpA Kk
KV frem =zt (D20)
P.VE
or
CpA K PoVR PoVg
By + —— 5 t = ln —— = In =7 (p21)

Equation (D21) shows that the rate of descent is steady, as can be made clear
by taking the derivative to obtain

_dy _CpA
Vy = -3 = “m 2B (p22)
The flight-path angle is obtained as a function of the velocity from
v CpA
\ . v D K
'S e = e —
2 9 sin y = < o BRT (p23)

and may also be obtained as a function of
t or x by use of (D15) or (D17).

n;n The lift-to-drag ratio required to
follow thils path and the accelerations
experienced may be derived as follows.
The motion is not circular about the
center of the planet, and to find L/D,
we must consider the actual flight-path
curvature. The notation employed is

dy’ indicated in sketch (b). About the
instantaneous center of curvature

R dy' = dx (p2k)
Center of
curvature

The angle y' 1s measured relative to

the reference direction C-1, while the
local flight-path angle ¥ is referred to
the local tangent to the planet's surface.
From the sketch

Planet center
dy' = dy + dt (D25)
Sketch (b)
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Since dE 1is a differential, we may write

Ry 4t = (dx)cos ¥

which is combined with (D24) and (D25) and solved for R to obtain

R = L
(@ /ax)+ [(cos 7)/Rg]

By Newton's second law of motion

Wecos y + L =mv2 dy + 257
dx Rp

from which, noting that gRp = Vg%,

2
\i dy
<§§> <ﬁp T—v+ cos %) - cos vy

By equations (D23) and (D17)

L
W

Cph K/28
™ Vg - (CpA/m) (K/2)x

sin y =

and by differentiation of (D30)

dy .
T B sin y tan y

so (D29) may be written for the constant Reynolds number descent

2
L v .
i <§;> <ERP sin y tan y + cos %) - cos ¥

By the definition of drag coefficient

and L/D is obtained by dividing (D32) by (D33):

~ [(V/Vs)2 - llcos y + (V/VS)ZBRP sin y tan y

L
D (Cph/W) (KVg/2) (V/Vs)
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(D29)
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(D31)

(D32)

(D33)
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For small ¥, cos ¥y =1, sin y = tan y = Vy/V, and we may write

% CDA K\2rs Vs [( > 1 + BRp >:l (D35)

With V,, = O, this reduces to the expression for constant altitude flight,
equation (D2). With nonzero Vy, a further reduction is accomplished by

relating the factor outside the bracket to Vy/V through equation (D23).

L 1-(Vvg/m2
L_L1-\e/V) Yy 6
5 PRV T + 5 (D36)

Thus, the L/D required is obtained as a function of velocity and descent
rate, while the descent rate has a known dependence on the vehicle parameters
and the constant Reynolds number selected.

The axial acceleration is given by equation (D4). The transverse acceler-
ation for small 7y is, by (D27), (D28), and (D31),

2 2
&y _ Vy i
E = BRp @> + 'v—s-> (D37)

which may be compared with equation (D5). The total acceleration is given by

g B <Vls>2 / [2(v/v?)hzw/cDA)J2 " [BRP <\"f_y>2 * lT (38

RELATIONSHIP BETWEEN LOCAL AND FREE-STREAM REYNOLDS NUMBER

The ratio of the local Reynolds number based on edge properties and slant
length to the free-stream Reynolds number, referred to base radius, may be
written

Re. P U MBS

Re ~ PV Ty (D39)

For a thin hypersonic shock layer

Ue

v

cos B¢

and from the cone geometry, S/rb 1/sin 6,+ Furthermore,

e . o(V sin 6,)2

Pe = RTeZe =~ RlcZe
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Figure 33.- Ratio of local to free-stream
Reynolds number for cones in hypervelocity
flight.

Re€

Re

tan 8, = k

so equation (D39) becomes

Rec  (V sin 0.)° 1

cos B¢
Re RTZ¢ e sin 6,

(pLo)

In figure 33, the ratio (Rec/Re)tan 6,
is plotted as a function of normal
velocity component, V sin 6,, over the
range from 5 to 12 km/s for altitudes
ranging Tfrom 42.7 to 61 km. The thermo-
dynamic properties were evaluated with
the aid of reference 2L, and refer-

ence 25 was used for the transport
properties.

The flight conditions shown in
figure 33 are representative of those
for near-optimum bodies. If Reynolds
nunber ratio is written as

(ph1)

then, k = 2 for normal velocities from 5 to 8 km/s and decreases to about 1.3

at U = 10 km/s.

has been used throughout the analysis.
values of U has the effect that for a given value of Re, Rec

In order to be conservative, and for convenience, k = 2

Use of this value of k at the higher
is less than

the limit Reynolds number which is being imposed.

52



APPENDIX E
ANATYSTS OF NOSE ABLATION

The heating rate per unit area at the stagnation point of a blunted nose
may be written

dHg ¢

3t = CHst ov® (B1)

o=

where Cpg, 1s the dimensionless local stagnation-point heat-transfer coeffi-

cient consisting of a laminar convective and a radiative component. The con-
vective component may be written, based on thecretical results given in
reference 26, as

CHgtg = (3.65x10"*Npr, ) ¥ (E2)

where the constant 3.65x10~% has the dimensions (kg/m?)l/z, and YV represents
the reduction in heating due to transpiration and is assumed to be given by
equation (18).

The radiative component may be written, assuming the shock layer is
optically and physically thin,

P=-1
q-3

fs (23)

pO

CHSte = Ce8V

where Ce i8 given in the text and ® is the shock-wave standoff distance
at the stagnation point, given for spherical noses (ref. 27) by

5 = 0.78 rp g— (EL)
2

Here, P, is the gas density behind the shock wave, and is, for equilibrium
shock layers, a function of p and V only. The heat-transfer coefficient

CHst = CHgy, * CHgt, (E5)

is thus a function of ambient density, velocity, and nose radius. The rate
of mass loss at the stagnation point may be written

_ stt/dt

% - : (E6)
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and the rate of surface regression is

kp = KE; (ET)
so that, by (E6) and (El),
1 3
. CHst 2 eV
Xy = ——— (E8)
Cpb

The following assumptions are now made: (1) The nose is originally a
sphere segment of small finite radius and remains spherical during ablation.
(2) Deviations of the heat transfer from that given by the above relations,
due to deviations from chemical and thermodynamic equilibrium, are small.

(3) Fnergy release and surface erosion due to chemical reactions of the abla-
tion materials with atmospheric gases may be neglected. (4) No material is
removed by spallation.

Under the assumption of spherical blunting, the rate of increase in nose
radius may be related to the rate of surface regression at the stagnation
point

. N sin @

= —_—C
“n = *n T = sin 6. (89)
so that 1 5
CH —_ pV .
g = st o sin ¢ (E10)

gpb 1l - sin ec

Given the trajectory relations, which define the variations of p and V with
time, and the heat-transfer coefficient, equations (E2) through (E5), equa-
tion (E10) may be numerically integrated to obtain the nose radius as a func-
tion of time during entry.
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